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The solitary wave in water of variable depth 
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University of Melbourne 

(Received 17 December 1969) 

Equations are derived for two-dimensional long waves of small, but finite, 
amplitude in water of variable depth, analogous to those derived by Boussinesq 
for water of constant depth. When the depth is slowly varying compared to the 
length of the wave, an asymptotic solution of these equations is obtained which 
describes a slowly varying solitary wave; also differential equations for the slow 
variations of the parameters describing the solitary wave are derived, and solved 
in the case when the solitary wave evolves from a region of uniform depth. For 
small amplitudes it is found that the wave amplitude varies inversely as the 
depth. 

1. Introduction 
The behaviour of surface gravity waves on a beach has been a subject of 

considerable theoretical and experimental research. In  the simplest situation 
the flow is two-dimensional and irrotational, and the fluid is inviscid, incom- 
pressible and of constant density. Then, for a train of infinitesimally small 
amplitude oscillatory waves of frequency w and wave-number K ,  the change in 
amplitude a due to a gradual slope may be determined by the assumption that 
the rate of energy propagation remains constant (Rayleigh 191 1). Thus 

cga2 = constant, 

do 
c = -  o2 = gK tanh Kh 

where cg is the group velocity, 

d K ’  

is the dispersion relation, and h is the undisturbed depth. Since w remains con- 
stant, the elimination of K between (1.1) and (1.2) determines a as a function of h. 
For infinitely long waves, ~h +- 0, and this procedure leads to Green’s law (Green 
1837) 

These results may also be derived by constructing an asymptotic expansion 
based on the assumption that if reflexion processes are ignored and the variation 
of h with the horizontal co-ordinate x is very small over a typical wavelength 
then the wave form is locally sinusoidal (Keller 1958). In addition conservation 
of mass requires the set up of a mean reverse flow and conservation of momentum 
requires a decrease in the mean depth as h decreases, both O(a2)  (Longuet- 
Higgins & Stewart 1964). 

For infinitely long waves of finite amplitude, the governing equations are 

ah4 = constant. (1.3) 
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analogous to those of gas dynamics, and it is well known that no permanent 
progressing wave form is possible. However, it  may be shown that a discon- 
tinuity in wave slope for a wave of elevation will cause the wave to break (i.e. 
the wave slope becomes infinite) before the shoreline is reached (Greenspan 1958). 
On the other hand if a bore reaches the shoreline in finite time, it does so with a 
finite speed and zero amplitude (Keller, Levine & Whitham 1960). 

In  this paper we shall consider the modulations formed on the Boussinesq 
solitary wave by a slow variation in the depth. This solitary wave is a permanent 
progressing wave form consisting of a simple elevation above the undisturbed 
surface whose amplitude a and length A (usually defined as the width when the 
free surface is one-tenth of its maximum height) are such that a/h and h2/h2 are 
comparable small quantities. It was first observed by Russell (1837), and estab- 
lished theoretically, to the lowest order in alh, by Boussinesq (1871, 1872). Ippen 
& Kulin (1955) have performed experiments in which a solitary wave is incident 
on a beach of constant slope. They found that the amplitude increased with 
decreasing depth approximately according to the law h? where k depends on the 
beach slope and decreased as the slope was increased (e.g. k = 0.47 for a beach 
slope of 0.023). In addition the wave crest became more pronounced, and there 
was increasing asymmetry due to steepening on the front face, as the wave 
climbed the beach; eventually wave breaking was observed, either due to 
‘peaking’ at  the wave crest and subsequent spilling, or due to an infinite slope 
on the front face and subsequent plunging. 

To discuss the behaviour of a solitary wave on a beach, we first derive, in 
$2, equations analogous to those used by Boussinesq for the case of constant 
undisturbed depth. In  $ 3  we derive various properties of the solitary wave. 
In $ 4  we consider the case when the still water depth h is a slowly varying func- 
tion of the horizontal co-ordinate x and so varies little over a distance comparable 
with A, the length of the wave. An asymptotic expansion is introduced, analogous 
to those used by Whitham (1965a, b )  to discuss modulations on cnoidal waves 
on a constant depth, and in other situations also (we note that the solitary wave 
may be regarded as a limiting case of a cnoidal wave as the wave period becomes 
infinite). Then transport equations for the amplitude and for the other parameters 
determining the solitary wave are derived, either by imposing conditions which 
ensure that the asymptotic expansion is uniformly valid in x, or by using con- 
servation laws. In  $ 5  these transport equations are solved; the principal con- 
clusion is that when the wave develops from a region where h is constant then the 
variation of the amplitude em is determined by conservation of the energy in the 
wave and this causes em, for small e,/h, to vary as h-l. Finally, in 5 6 the relation- 
ship of the asymptotic expansion to a certain exact solution of the governing 
equations is considered. 

2. Equations of motion 
It will be assumed that the flow is two-dimensional and irrotational, and that 

the fluid is inviscid, incompressible and of constant density. We shall be con- 
cerned with long waves so that if h is a horizontal length scale for the waves, and 
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h, is a length scale for the undisturbed depth, then the parameter e = hi/h2 is 
small compared to one. Since it can be anticipated that for long waves the 
Froude number will be close to  critical we choose (gh,)B as a typical velocity 
scale. Then introducing dimensionless co-ordinates based on A,  h,, (gh,)B we find 
that the equations of motion for the velocity potential $(x, y ,  t )  are 

q5,x+$yv = 0 for - h  y 7, (2.1) 

ehx+,+$, = 0 for y = -h ,  (2.2) 

4rt+ r z $ x )  - 4, = 0 for Y = 7, (2.3) 

e(y + q5t + 44;) + +$$ = 0 for y = 7, (2.4) 

where y = ~ ( x ,  t )  is the free sudace, and y = - h(z) is the undisturbed depth, 
(q.v. figure 1) .  Equations (2.2), (2.3) are kinematic boundary conditions and 
(2.4) is the condition that the pressure be constant on the free surface. 

Y = tl(.Y, f) 

FIGURE 1. Co-ordinate system. 

For smalleweseekasolutionof (2.1) and (2.2)intheform$ = a($,+~q5~+ ...), 
where a is a measure of the wave amplitude. We find that, to  O(E),  $ may be 
expressed in terms of a new unknown function F(x,  t )  as follows 

$ = a(p+e( -y(hpz)x-&/2px,) +O(E’)). (2.5) 

Substitution into (2.3) and (2.4) then gives a pair of coupled equations for 7 
and F ,  both functions of x and t only. However, these will be further simplified 
as i t  is well known that the Boussinesq solitary wave may be characterized by 
requiring a and e to be comparable small quantities (Ursell 1953). Thus we put 

(2.6) 7 = a(E + O(e2)), 

where E(z,  t )  is another unknown function, substitute into (2.3) and (2.4) and 
retain all terms up to  O ( 8 )  or O(ae2), etc. This procedure leads to the Boussinesq 
equations E+&+&cF~ = 0, (2.7) 

(2.8) E,+ (hF,),+a(Ep,),+ s(~h3-E”,,),+~(gh2h,,p,), = 0. 
41 F L M  42 
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These equations are analogous to those used by Boussinesq (1  872) when h is 
constant, and equivalent versions have been given by Mei & Le MBhautc5 (1966), 
and Peregrine (1967). When the terms of O ( E )  are omitted they reduce to the 
non-linear shallow water equations, and when the terms of O ( a )  are also omitted 
they reduce to the linearized shallow water equations. Thus they contain the 
first-order effects of non-linearity, represented by a, and of frequency dispersion 
represented by E .  

It will be useful in the sequel to  identify (2.7) and (2.8) as the Euler equations 
of a certain Lagrangian. Indeed, Whitham (1967) has shown that the Boussinesq 
equations for constant h may be derived by suitably approximating a certain 
Lagraiigian for the system (2.1) t o  (2.4)) and we shall follow a similar procedure 
here. Luke (1966b) has shown that the system (2.1) and (2.4) can be derived 
from the variational principle 

where the infinitesimal variations S$, Sr are sufficiently differentiable and vanish 
as x,t approach the boundary of the region of integration. If the expansions 
(2.5) and (2 .6)  are now substituted into (2.9) the integrand, to O(e3) with the 
omission of certain divergence terms which do not contribute to the Euler 
equations, is a”-L where 

L ( E ,  F,, F,,, F,;  X )  = EF, + kE2 + +(h + aE)  F i  - e6h3 F:, + E$h2h,, F:, (2.10) 

and L may now be identified as an appropriate Lagrangian for (2.7) and (2.8).  
Indeed the variation of L with respect to E gives (2.7),  and the variation with 

(2.1 1 )  

which is jus t  (2.8). The form of (2.11) will be useful in the sequel as i t  is in con- 
servation form, and corresponds to  the explicit absence of F in L. It represents 
for small E ,  conservation of mass. Another conservation law may be found from 
the explicit absence of t  in L, and is 

*) = O .  (2.12) 
Ft aF,, 

This equation represents conservation of energy, and - {&(aL/aF,) - L} may 
be regarded as an energy density, although it  differs from the exact energy 
density, even for small E ,  by the previous omission of divergence terms from L. 
Nevertheless, it may be shown that certain average energy densities can be 
computed from F,(aL/aFt) - L. An equation, which corresponds to  (2.11) and 
(2.12), but represents momentum, is 

( Fx &) + (Fx&- L + 2Fx, W Z X  ~ a L )  - - :z2(Fzg)+g=0, (2.13) 

where the last term is the explicit derivative of L with respect to x through the 
dependence of L on h. This is not a true conservation law as it contains the 
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inhomogeneous term aL/ax which represents the horizontal pressure thrust due 
to the bottom slope. A further conservation law is 

2 a 
at ax - (F,) + ( -4) = 0. (2.14) 

Now that the ordering parameters a, e have served their purpose, we shall, 
in the following sections, revert to dimensionless co-ordinates based on a length 
scale h, and a velocity scale (gh,)*. Thus we shall use (2.7), (2.8) and the sub- 
sequent equations, but with a = e = 1, so that e.g. y = E is the equation of the 
free surface to the approximation considered. We shall also, without any 
ambiguity, call F the velocity potential and 

U = F, (2.15) 
the velocity. 

3. The solitary wave 
In  this section it will be assumed that h is constant. We shall seek a solution 

of the Boussinesq equations (2.7) and (2.8) for which E and U are functions 
only of the phase 

(3.1) 

where K (wave-number) and c (wave speed) are constants. Thus we seek a solution 

(3.2) 
of the form E = B + e(8), 

u = A +21.(8), (3.3) 

8 = K(X - ct) ,  

where A ,  B are constants, representing the mean velocity and mean height 
respectively and defined so that e, u and all their derivatives vanish as 101 + co 
(we are anticipating from the form of (2.7) and (2.8) that any such solution will 
be even in 8). The corresponding form for the potential, F ,  which must satisfy 
U = F, and be consistent with (2.7) is 

P = Ax- Ct+f(O), (3.4) 

where f(8) = so K - l  U ( 8 ' )  do' 
0 

and C is a constant, related to the Bernoulli constant. 

behaviour as 181 + co implies that 
Substitution of (3.2) and (3.4) into (2.7), and application of the limiting 

(3 .5 )  

(3.6) 

e7c"u-I 2 221. 3 

c = B + gA2, 

where c* is defined below (3.7). Then substitution of (3.2) and (3.3) into (2.8), 
elimination of e by (3.5), and two integrations with respect to 0, imply that 

p K 2 U ;  = w(u)  (c*Z - h") u2 - C*U3 + $21.4, (3.7) 

where C* = C - A ,  h* = h + B .  
41-2 
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This has the solution 
urn sech2p6 

1 - d tanh2p6 ’ u =  

where U, = 2 ( ~ * -  Jh*), (3.9) 

c* - Jh* a=---- 
c*+ Jh*’ 

(3.10) 

~p = J$(c*2 - &,*)A h-%, (3.11) 

and we have selected the origin of B to be the wave crest, where both e and u 
achieve their maximum values em and urn respectively. Indeed we find that 

em = , / (ha )  urn. (3.12) 

Thus the solitary wave profile, the wave amplitude em and the ‘wavelength’ ( ~ p ) - l  
are determined completely by the constants A,  B and c; the constant K plays 
the subsidiary role of relating the x scale to the 0 scale. For small values of em 
(h  and h* being O(l) ) ,  d is O(em) and may be neglected, and then (3.8) reduces 
to the solitary wave profile found by Boussinesq (1871); also the wave speed 
formula (3.9) is then equivalent to the more commonly quoted formula 

rn, - c*2 = h* + e 

Although our derivation of the Boussinesq equations was such that, for con- 
sistency, all formulae such as (3.8) should be reduced to their lowest order in 
em, we shall continue to work with the ‘exact’ formulae above (‘exact’ in the 
sense that they are exact solutions of the Boussinesq equations (2.7) and (2.8)); 
indeed it causes no extra algebraic inconvenience to ignore the smallness of em, 
and the retention of the higher order terms in em may give some indication of 
the effects of increasing non-linearity. It may be shown that the profile given 
by (3.8) is a close approximation to the Boussinesq profile (e.g. the maximum 
difference is approximately 2 % for emh-l= 0.1, and approximately 74 % for 
emh-l= 0-4) and the latter was shown by Daily & Stephan (1952) to be in good 
agreement with experimentally observed profiles for values of e,h-l as large as 
0.6 (for the larger values of emh-l the experimentally observed profile is thinner 
near the crest than the Boussinesq profile); similarly the observations of Daily & 
Stephan show that the wave speed given by (3.9) is approximately 6 yo too high 
for emh-l= 0.6, with a decreasing error for decreasing e,h-l. 

We shall conclude this section with the calculation of various quantities of 
interest associated with the solitary wave. First, we give the following definitions. 
If P(6) is the relevant quantity, then its mean is 

P = lim P ( o ) ;  
Inl-.m 

the reduced (or wave) quantity is 

(3.13) 

p(6)  = P(6) - P ;  (3.14) 

and its wave average (or mean) is 

(3.15) 
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is the wave average with respect to the x scale. Clearly P is a function so that 
of A ,  B and K - ~ @  is a function of A ,  B and c. Thus we find that 

6 = ,/%cKh$(c*z - h*)t, 

& = 4yKhg c0sh-l (c*/,/h*); 

(3.16) 

(3.17) 

also the mean Lagrangian, and the wave average Lagrangian are 

L = -BC+gB2+ij(h+B)A2, (3.18) 

i = &(h*A-cB)-G, (3.19) 

where 0 is the wave average of the polynomial w(u) defined in (3.7)) andisgivenby 

= K W ,  (3.20) 

(3.21) where 

It may be noted that 8 is the wave average of the mass density (apart from the 
constant proportionality factor ph,, where p is the density of the fluid), so that 
K-l6 is the mass carried forward by the wave. Also the wave average of the 
momentum density (apart from the factor ph,J(gh,)) is 

h*& + A& + atqac. 

Finally, the wave average of the energy density (apart from the factor pgh;) is 

W = W ( A ,  B;  C, h)  = ,/$h% ,/(w(u)) du. 
IOU"' 

(3.22) 

(3.23) 

and further c(adj/ac) -3 = (%)2 Kh*(c*2- h*)t+A(ad/&). (3.24) 

4. Modulations caused by slowly varying depth 
It will now be supposed that h is a function of x but is slowly varying in the 

sense that h varies little over a distance comparable with the length of the wave. 
Thus we shall assume that h = h(X)  where 

X = Px, T = Pt, (4.1) 

and pis a small parameter such that p < ~ p .  In  this section we shall find equations 
which govern the modulations to the solitary wave of $ 3  caused by this slow 
variation of the depth. This will be achieved by finding an asymptotic solution 
of the Boussinesq equations which represents a slowly varying solitary wave 
i.e. locally this asymptotic solution may be represented by the uniform solution 
of $3, but the parameters A ,  B, C ,  c and K which determine that solution are 
now slowly varying and so functions of X, T. Our principal aim is the determina- 
tion of transport equations for these parameters. Whitham (1965a, b )  has con- 
sidered problems of this type for periodic slowly varying wave trains governed 
by non-linear, dispersive equations. The procedures described in this section are 
closely related to the procedures developed by Whitham and other workers in 
this field. 
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Thus we are motivated to seek an asymptotic solution of the Boussinesq 
equations (2.7) and (2.8) of the form 

(4.2) I E = B ( X ,  T )  +e(B;  X ,  T) +PEl(6; X ,  T) + O(P2) ,  

u = A ( X , T ) + ~ ; X ,  T ) + P ~ , ( ~ ; x , T ) + o ( ~ ) .  

A,  B are determined so that e, u and all their derivatives with respect to 8 vanish 
as 181 -+ co, and the phase 8 is such that 

8, = K ,  et = - K c ,  (4.3) 

and so 8 = P-lO(X, T ) ,  where K = Ox, - KC = 0,. (4.4) 

B is a fast variable, which has yet to be determined, and X, T are slow variables; 
(4.2) is a two-scale asymptotic expansion of a type familiar in the context of 
ordinary differential equations. Since derivatives with respect to 8 are O( l), while 
derivatives with respect to X and T are O(P), it is clear that when (4.2) is sub- 
stituted into (2.7) and (2.8), the terms of O(1) are just those which describe the 
solitary wave of $ 3  and so e, ZG are determined as functions of8 by (3.5) to (3.11)7 
except that the parameters A ,  B, C, c and K are now functions of X ,  T .  The 
transport equations which determine these parameters are found by applying 
the principle that the asymptotic expansion (4.2) is to be uniformly valid i.e. 
PE, and PU, are O(P) with respect to B + e and A + u respectively for all 8. Thus 
we shall assume that El and U, can be constructed so that 

exist, and all derivatives of U, and El with respect to 8 vanish as 181 + co. It will 
be shown in subsection (a) below that such a construction is indeed possible. 
From (4.5) we define 

A ,  = + ( A t  +A,) ,  [U,] = ( A t  - A T ) ,  U ,  = U,-A,, (4.6) 

with similar definitions for B,, [El] and el. 

where U is given by (4.2). Thus 
Next we seek an asymptotic expansion for the potential F such that U = F, 

where the remaining terms are O(Pz) if they involve ~9 and O(P) otherwise, and 

f = J K-, ~ ( 8 ' ;  X ,  T) d6', 

@lX = A,, $IT = -% (4.10) 

KflS = u1 -fx* (4.11) 
It follows that 

Ft = - C - CU+P( -C,- CU,+ fT + cfx) + O(p2). (4.12) 

Then substitution of (4.2) and (4.12) into (2.7) gives, for the terms of O ( l ) ,  (3.5) 
and (3.6)) while the term of O(p)  is 

B, + el - C, - cu, +fT + cfs + ( A  + u) ( A ,  + ul) = 0. (4.13) 
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Letting 8 --f 5 co we find that 

c; = B,+ AA,, (4.14) 

(4.15) [El] = C*[u1] - (K-’&?)r - C(K-”&),. 

Next, substitution of (4.2) and (4.12) into the consistency relation (2.14) yields, 

forthetermofo(P)’ A T + C X + { K T + ( K C ) ~ } U  = 0; (4.16) 

and letting 119 I -+ co we have 
A,+C, = 0, 

whence KT + ( K C ) x  = 0. 

(4.17) 

(4.18) 

These two equations are just the consistency relation for @ and 8 respectively 
and provide two transport equations. A third is (3.6); two more are needed and 
may now be determined in each of three ways. 

(a) Direct method 

In  this subsection the transport equations will be found by first finding U, (and 
hence E l )  explicitly. The methods used here are similar to those used for slowly 
varying periodic wave trains by Luke (1966a) for a Klein-Gordan equation, 
and Hoogstraten (1968) for the Korteweg-de Vries equation, and for the 
Boussinesq equations of constant depth, and are analogous to the Poinear6 
technique for ordinary differential equations (e.g. in particular to the work of 
Kuzmak 1959). 

If (4.2) is substituted into (2.8)’ then the term of 0(1) defines the solitary wave 
of $3, while the term of O(p)  gives 

K{ - cE1+ (h* + e )  U1+ (h  +El)  ( A  + U )  + $ ~ ~ h ~  U-i,, + h3~,ug + h3~u,x  + 2h2hx K U ~ > B  

+(B+e},+((h*+e)(A+u)}, = 0. (4.19) 
Letting 101 + co we see that 

B, + (h*A)x = 0, (4.20) 

which is the fourth transport equation. Then (4.19) is integrated with respect to 8, 
and after elimination of e and el by (3.5) and (4.13) respectively, we find that 

Qh3~2~1es - ( c * ~  - h*) u1+ ~ C * U U ~  - Qu’u~ = G, (4.21) 

G = D, - K - ~  {e, + (h*u), + (Ae), + (eu),}dO’ so” where 

- h 3 ~ ,  U, - h3~u,X - 2h2hx KUe 

- (c* - U )  (f, + cfLy) - uB1- 2uc*A1 + $u2A1, (4.22) 

where D,(X, T )  is a ‘constant ’ of integration. It may now be observed, by dif- 
ferentiating (3.7) twice with respect to 8, that the homogenous part of (4.21) 
(i.e. when G is replaced by zero) has the solution U, = u g .  Thus (4.21) may be 
integrated again with respect to 8 after first multiplying by u g ,  and we find that 

(4.23) 
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where D,(X ,T)  is another ‘constant’ of integration. Letting 8- t  f c o  we see 
that the left-hand side then vanishes, and so therefore must the right-hand side. 
Thus D, = 0 and 

ueGd0 = 0. (4.24) 

Since u is an even function of 8, (4.24) involves only A ,  B, c and K and is the 
fifth transport equation. The complete set of transport equations is thus (3.6), 
(4.17), (4.18), (4.20) and (4.24). One further integration of (4.23) yields 

rrn 

where 
e 

H =I u,Gd0’, 
--m 

(4.25) 

and D,(X, T )  is another ‘constant’ of integration. It may now be shown that 
Hu-1 remains finite as 0 -+ 5 00 (in spite of the fact that e.g. ux contains terms 
of the type &,), and so u, remains bounded as 8 -+ & 00, and all its derivatives 
vanish as 0 -+ co. Of course, u1 is determined by (4.25) as a function of 8 
only, and still depends on the ‘unknown’ constants A ,  B,, D,  and D3; these 
may presumably be determined in a, similar way to the above by continuing 
the asymptotic expansion (4.2) t o  a higher order in p. 

( b )  Averaged conservation laws 

In this subsection the transport equations will be derived by applying suitable 
averaging procedures to the conservation laws (2.11), (2.12), (2.13) and (2.14). 
These procedures are analogous to those used by Whitham ( 1 9 6 5 ~ )  for slowly 
varying periodic wave trains, and are related to the Krylov-Boguliobov technique 
familiar in the context of ordinary differential equations. 

The typical conservation law has the form 

a q a t  + a q a x  + p ~  = 0, (4.26) 

where R is proportional to h, and its presence is due to the inhomogeneity of 
the medium. Since E,  U have asymptotic expansions of the form (4.2), it follows 
that P, Q, R have similar expansions e.g. 

P = Po(@; x, T) +PP,(O; x, T) + O(P2). (4.27) 

Then our hypotheses on E ,  U are such that 

P; = lim P, (i = O , 1 )  
B+*m 

certainly exist, and we define 

(4.28) 

- 

P, = +(P,+ + Pi), [Pi] = (PZ -Pi) (i = 0 , l ) .  (4.29) 

Since Po, etc., are even in 8, [Po], etc., vanish but as we shall see, [P,], etc., in 
general are not zero. Also we observe that 

(4.30) 
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Next we define the reduced (or wave) quantity by 
- 

1, = Po- Po (4.31) 

and its wave average (or mean) by 

$ =  lim pd0,  Sr , (4.32) 

We now substitute the expansions such as (4.27) into (4.26) and equate to zero 
the term of O ( l ) ,  and the term with coefficient 1; the former gives a relation 
satisfied identically by the solitary wave of 8 3, and the latter gives 

POT + &,, +Ro + p T  + qs + r - KcPlo + K & ~ ~  = 0. (1.33) 

First we take the mean of (4.33), i.e. the averaging procedure defined by (4.30). 

(4.34) 
This yields the equation POT + QOAY +R, = 0. 

Next we substract (4.34) from (4.33), and take the wave average, i.e. the averaging 
procedure defined by (4.32). This yields the equation 

(@IT + (4)s + @ - KC[PII + K[&11 = 0. (4.35) 

Equations (4.34) and (4.35) are transport equations for A ,  B, C ,  c and K, and 
also for [El] and [U,]. 

It is convenient when applying the averaged conservation laws (4.34) and 
(4.35) to do so in conjunction with the formulae (3.5), (3.6) and (4.15), all of 
which are derived from (2.7) (which is not in conservation form). If (4.34) is 
applied to (2.14) and (2.11), then we obtain (4.17) and (4.20) respectively; further 
applications to (2.12) and (2.13) yield two transport equations for A ,  B, G which 
are equivalent to (4.17) and (4.20). Application of (4.35) to (2.14) yields the 
transport equation (4.18); application of (4.35) to (2.11) yields 

(6)yT + h*û  +At?+ + K (  - c*[EJ + h*[U,]) = 0, (4.36) 

where 8 is defined by (3.20), (3.21). [El] and [U,] may now be found in terms of 
A ,  B, C ,  c and K by solving (4.15) and (4.36) simultaneously. Next application 
of (4.35) to (2.12) and subsequent elimination of [El] and [U,] yields 

( 

(c$-8),.. ( c  ( c g + 8 ) ) , - $  = 0 ;  (4.37) 

similarly application of (4.35) to (2.13) and subsequent elimination of [El] and 
[U,] yields (g)*+(cg) -a a8 = 0, 

X 
(4.38) 

which is easily seen to be equivalent to (4.37). In  both of these equations 
8 = KW(C;  X, T )  so that e.g. a8/aT means differentiation with respect to T while 
c and K are kept constant; 8 depends on X, T through its dependence on A ,  B 
and h. Finally, it may be shown that (4.24) can be reduced to either of (4.37) 
or (4.38). 
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( c )  Averaged variational principle 
Whitham (1965a, 1967) (see also Bretherton 1968) has developed an heuristic 
procedure for finding the transport equations for slowly varying periodic wave 
trains, when the governing equations are the variational equations of a Lag- 
rangian density. Briefly this procedure consists of calculating the average value 
over one period of this Lagrangian density for the uniform wave train, which 
itself depends on a set of parameters such as frequency, wave-number, etc.; 
this averaged Lagrangian is then subjected to the variation of these parameters. 

The Boussinesq equations (2.7) and (2.8) for constant h possess a solution of 
the form (3.2), (3.3) and (3.4) which has a period y, where now u has zero mean 
so that A = - /  1 y  Ud8,  

2Y -y  
(4.39) 

with a. similar equation for B, and 

$ h 3 ~ 2 ~ i  = K , + K , u + ( B + ~ A ~ - C ) U ~ + W ( U )  v(u); (4.40) 

w(u) is defined by (3.7), and K,, K ,  are constants of integration. If the poly- 
nomial v (u )  has the four real zeros d-lu, > urn > u1 > u2, we select that solution 
of (4.40) for which u lies between u1 and u,. Then if K,, K ,  -+ 0 simultaneously, 
so that the period y -+ co, the solution of (4.40) becomes the solitary wave 
(3.8). The averaged Lagrangian is defined to be 

Y -.=L/ m e  (4.41) 

2 = Z ( A ,  C; B) + $K,- Y - ~ & K ~ %  1””” %Mu)) du, (4.42) 

where L is defined by (3.18). 9 is thus a function of the parameters A ,  B ,  C; 
K,, K,, w ( =  KC the frequency) and K. For a slowly varying wave train these 
parameters are functions of X ,  T, and Whitham’s procedure is to  subject 9 to 
variations of @ (where @x = A ,  @T = - C), 0 (where 0, = K ,  0, = - w ) ,  B ,  K,  
and K,. Thus the transport equations are 

2Y - y  
and is given by 

u u1 

(4.43) 

(4.44) 

(4.45) 

(4.46) 

(4.47) 

Equation (4.46) is the dispersion relation which determines y as a function of 
the parameters, and (4.47) is the condition that u have zero mean. Two more 
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transport equations are obtained by applying the consistency relations (4.17) 
and (4.18). Altogether there are seven transport equations for the seven para- 
meters. Now we can let K,, K ,  + 0, so that y -+ 00 and 9 -+ E ;  (4.43) and (4.45) 
become 

which are just (4.20) and (3.6) respectively. Equation (4.44) becomes 

(E?)T-(g) = o ,  
x 

(4.48) 

(4.49) 

where 63 is regarded as a function of w ,  K and X, T; if instead 63 is regarded as a 
function of c, K and X ,  T then (4.49) is just (4.37), or (4.38). Equations (4.46) and 
(4.47) do not retain any significance as y + co. The form of (4.48) and (4.49) shows 
that our transport equations can be derived from two variational principles; 
first by subjecting L, a function of A ,  B, C, to variations of $ and B; and secondly 
by subjecting 63, a function of w( = KC) ,  K and X, T (through A ,  Band h) ,  to varia- 
tions of 0. 

5. Solution of the transport equations 

displayed here again for convenience : 
The transport equations are (3.6), (4.17), (4.20), (4.18) and (4.37), and are 

The first three equations involve only A ,  B and C ;  they are, perhaps not un- 
expectedly, just the shallow-water equations (i.e. (2.7) and (2.8) with the dis- 
persive terms absent), and oan, in principle, be solved. In  particular if A and B 
vanish at  T = 0 for all X, then they vanish for all T.  In any event, A and B 
can be regarded as known when considering (5.4) and (5.5). Since 63 = KW, and 
W is a function only of c and X ,  T (through A, B and h),  it is convenient to 
eliminate K from (5 .5 ) :  

This is a single equation for c, or better, for 

aw 
ac 

v = c - - W  (5.7) 

and its general solution can, in principle, be obtained. 
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We shall now consider a special case when (5.6) may be integrated explicitly. 
It will be supposed that h = 1 for all X < 0, and so the wave evolves from a 
region where it is uniform. Thus the transport equations are to be solved subject 
to the initial values, A = B = 0 and K, c constant. (This cannot be exactly true as 
the solitary wave is infinite in extent, and even when its crest is over a large 
negative value of X, part of the wave is interacting with the varying h in X > 0; 
however, it  is reasonable to suppose that this interaction can be made as small 
as we please by taking the initial values to be those at  an indefinitely large 
negative value of X.) Thus A = B = 0,  and since W then depends only on c and h, 
aW/aT = 0 and (5 .6 )  becomes 

where from (5.7) c = c( V ,  X ) .  The general solution of (5 .8 )  is 

VT++& = 0 (5.8) 

= "To), 

where To = 7'-~~s/o(lM(T*),s)~-'. (5.9) 

V is therefore an 'adiabatic invariant', i.e. it is constant on the wavelet which 
passed X = 0 at a time T,, and is travelling with speed c(M(T,,) ,X).  In general 
(5.9) contains the possibility of shock formation at  those places where T,, cannot 
be found as a function of X, T. However, since K, c are initially constant, so is 
V and the solution of (5.8) required is just V equals a constant (i.e. M is a con- 
stant). We note that since A and B are zero, it follows from (3 .23)  that V is the 
wave-average of the energy density with respect to the x scale, and so the solution 
we have obtained is just that which preserves the energy of the wave. This of 
course, might have been expected, as our asymptotic expansion is one which 
ignores reflexions and there is no other outlet for the loss of energy. Further, 
it follows from (3.24) that 

c2 = h+Nh- l ,  (5.10) 

where N is a constant (in general N is a function of To). The wave amplitude is 
found from (3.9) and (3 .12))  and is 

e ,  = 2 ( ( h 2 + N ) 2 - h ) .  (5.11) 

Figure 2 shows a plot of ern/(ern),, against h where (ern),, is the value of em at h = 1 
(i.e. X = 0); it exhibits the fact that ern/(ern),, for each N ,  increases as h decreases, 
but, for each h, decreases as N (and hence (em)o) increases. Also shown is the 
graph of h447 which represents the results of Ippen & Kulin's (1955) experiments 
on the behaviour of a solitary wave on a beach of constant slope 0.023; they 
observed a fairly wide scatter, and the curve shown is a best fit for several 
observations with values of (em),, ranging from 0.2 to 0.7 (and also with varying 
values for the initial depth of fluid). They also observed a small decrease in 
amplitude at the foot of the beach, where, in the experimental set up, there was 
an abrupt change in beach slope from zero to 0.023; this was presumably due to 
a reflexion. We have ignored this initial energy loss in displaying their results 
on figure 2 by allowing the graph of the experimental points (viz. h-0") to pass 
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through h = 1 when em = (eJ0  whereas the true curve would be similar in shape 
but displaced downwards by a small amount. For small values of (e,J0 we have 

em/(em)o h-l, (5.12) 

an approximation which is accurate to within 5 % for (em),, = 0.01, 0.3 6 h d 1 
and also for (e,,J0 = 0.1, 0.6 < h d 1 but becomes increasingly inaccurate for 
larger values of (em)o. 

Jr 

3 

1 

0 0.1 0.2 0.3 0.4 0.5 0.6 . 0.7 0.8 0.9 1.0 
h 

FIGURE 2. Graph of (e,n)/(em)o against h. 

Other properties of the wave can also be determined from (5.10). Thus we - -  

find that 
(5.13) 

(5.14) 

K-% = .J(j$) hg cosh-l(l+ Nh-2)&, (5.16) 

"El] = $h4h, (h2+N)f(~- l&)+ J ( T )  Nh,, (5.16) 

N [  V,] = $hAy (h + Nh-l) ( K-%). (5.17) 

Equation (5.13) shows that the length of the wave, ( ~ p ) - l  decreases as h de- 
creases; (5.14) to (5.17) show that themasscontainedinthewaveisnot conserved, 
and is fed into a mean flow, and a change in the mean depth, both proportional 
to Ph,. Further the equations (5.16) and (5.17) indicate that the effect of the 
terms of O(p)  in the asymptotic expansion (4.2) is to cause increasing asymmetry 

16N 



654 R. Grirnshaw 

due to steepening on the front face, and flattening on the rear face. If we adopt 
the criterion that the wave will break when u, = c (i.e. the velocity at  the crest 
equals the wave velocity) then (5.10) implies that the wave will break when 
h = J ( + N ) ;  a t  this value of h, e,h-l= 2 which is much greater than the most 
commonly accepted theoretical value of 0.78 for the highest wave on a constant 
depth (McCowan l894), although Ippen & Kulin's experiments showed that 
e,h-l M 1.2 at the breaking depth for a beach slope of 0.023. Of course the value 
u, = c is almost certainly outside the range of validity of the Boussinesq equa- 
tions. Finally, from (5.4) we see that KC is constant, and this determines K.  

6. Error estimate 
The procedures outlined in $4 have enabled us to construct functions 

,!?I = B+e+PE, ,  9 = P-'ll.+f+$l+Pfl, 0 = pz, (6.1) 

which satisfy the Boussinesq equations (2.7) and (2.8) approximately, with an 
error of 0(P2).  That is if 

D,(E, F )  = aLlaE, (6.2) 

where L(E,  F,, F,,, 4; X )  is defined by (2.10) (with a! = e = 1) then 

D l ( E , P )  = O(PZ), D2(,!?I,P) = O(P2). (6.4) 

We now pose the problem: does there exist an exact solution E ,  F ,  U = Fz of the 
Boussinesq equations for which8 - E and 0 - U are 0(P2) 1 The following analysis 
provides a partial answer to this problem. 

For simplicity, it  will be supposed that h = 1 for X d 0 and h takes another 
constant value for X large and positive and that h is as smooth as desired. Then 
we may assume that B and @ vanish for all 5 and t ,  and that, from (5.16) and 
(5.17), [El] and [U,] vanish for sufficiently large 1x1. Also we can assume that 
B, and @1 vanish for all x and t as their values were not relevant in the construc- 
tion of El  andf,. Thus the functions defined by (6.1) have been constructed so 
that 8, with all their derivatives, vanish as 1x1 -+ 00, for some time interval 
0 Q t Q to. Let E,  P be that exact solution of the Boussinesq equations which 
agrees with i?, P at t = 0, so that 

E-E\t=, = 0,  P-PIt=, = 0. (6 .5)  

We shall now assume that for the initial values (6.5) there exists an exact solution 
of the Boussinesq equations over the time interval 0 Q t Q to, such that E, U with 
all their derivatives, vanish as 1x1 -+ 00. Given this, we shall now show that 8, Z7 
differ from E ,  U by terms of 0(p2).  Let 

E' = E - 8 ,  F' = F - p ,  U' = F 2 - p .  x, (6.6) 

then D,(E', F ' )  = - U'O + 0(p2), (6.7) 
D2(E', F ' )  = - (E'U + U'E),+ O(Pz)), (6.8) 
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where the terms O(p2) are uniform for all x, and 0 < t < to. Now if 
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then D,(E, P) = - E,DD,(E, P) +F,D,(E, P). (6.10) 

It was remarked in $ 2  that D, = 0 is the equation for conservation of energy, 
and that 

&(E,P) E L-Ft-BLIBF, &E2+&(h+E)  U 2 - & h 3 U ~ + ~ h 2 h x x U 2  (6.11) 

may be regarded as an energy density; although it is not positive definite, it 
may be assumed that it takes only positive values in the long wave approxima- 
tion being used here (e.g. IhUxl 4 I Ul) ,  and that its vanishing implies that E and 
U vanish. Then, using (6.7), (6.8) and (6.10), it follows that 

D,(E’, P‘) = I + O(pz), (6.12) 

where I = (E’+&U‘2) (E’U+ U ’ 8 ) x -  U’U(hU‘+E’U’+(gh3U~)x)x. (6.13) 

On integrating (6.12) with respect to x, we find that 

yrn at --m &(E’,P’)dx = s _ ~ - m I d x + o ( p ~ ) .  (6.14) 

Clearly, using integration by parts where necessary and the long wave approxima- 
tion, the integral of I can be estimated in terms of the integral of 8, so that 

(6.15) 

where K ,  Q are constants. Since b(E’, P’) vanishes when t = 0 it follows that 

from which we may deduce that 

E - B  = 0(p2),  U -  U = 0(p2).  (6.17) 

Since 8, 9 contain no reflected terms, (6.17) shows that any reflected energy is 
O(p2). Indeed this same argument could be used to show that if b, P were such 
that the error in (6.4) was 0 ( p N )  for arbitrarily large N ,  then the reflected energy 
is also O(pN) .  

This work was completed while the author was visiting the Department of 
Applied Mathematics and Theoretical Physics, University of Cambridge, during 
the tenure of a Royal Society and Nuffield Foundation Commonwealth Bursary. 
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